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ABSTRACT 

In this paper, we study a deterministic inventory model for deteriorating items under time-dependent partial 
backlogging. Though lot of factors involving inventory affect the demand, among them time and stock are the most 
important factors. Therefore, we consider here the combined stock and time varying demand to make the theory more 
applicable in practice. We study the effects time dependent demand on the total profit and time factors. We prove that the 
optimal replenishment solution not only exists but is also unique. Numerical examples are given to illustrate the application 
of developed model.  
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1. INTRODUCTION 

Academicians as well as industries have shown 
great interests in the development of inventory control and 
their uses. Since the development of the EOQ concept 
more than four decades ago T.M. Whitin [15], a 
substantial amount of researches have been conducted in 
this area of inventory lot sizing. Constant demand rate is 
not always suitable to many inventory items (e.g. electric 
goods, fashionable clothes, tasty foods, etc.) as they 
experience fluctuations in the demand rate. In the last few 
years, the inventory lot-sizing models with time-varying 
demand and deterioration have received considerable 
attention. Dave and Patel [5] first considered the inventory 
models for deteriorating items with linear increasing 
demand. The consideration of exponentially decreasing 
demand for deteriorating items was first analyzed by 
Hollier and Malc [10]. Haringa and Benkherouf [9] 
generalized Hollier and Mac’s [10] model taking into 
account both exponentially growing and declining 
markets. Haiping and Wang [8] developed “An economic 
ordering policy model for deteriorating items with time 
proportional demand”. H. Xu [17] proposed, ‘Optimal 
inventory policy for perishable items with time 
proportional demand’. Goswami and Chaudhuri [6] 
established, “An EOQ model for deteriorating items with 
shortages and a linear trend in demand”, Benkherouf and 
Mahmoud [2] developed an inventory model with 
deterioration and increasing time-varying demand and 
shortages, Wee [16] studied an, “Economic production lot 
size inventory model for deteriorating items with partial 
backordering,” Silver [13] proposed a “Simple inventory 
object replenishment decision rule for a linear trend in 
demand”. We know that the shortages in inventory 
systems are either completely backlogged or totally lost. 
However, it is more reasonable to characterize that the 
longer the waiting for the next replenishment, the smaller 
the backlogging rate would be for many products with 
growing sales. The length of waiting time for the 
replenishment is the main factor for determining whether 
the backlogging will be accepted or not, and the 

backlogging rate is expected to be time dependent. Abad 
[1] proposed several pioneer and inspiring backlogging 
rates to be decreasing functions of waiting time. Chang 
and Dye [3] developed an EOQ model for deteriorating 
items with time-varying demand and partial backlogging. 
Papachristos and Skouri [11] developed, “An optimal 
replenishment policy for deteriorating items with time-
varying demand and partial exponential type-
backlogging,” Teng et al., [14] who proposed an optimal 
recursive method for various inventory replenishment 
model with increasing demand and shortages also 
considered this area. In reality, products deteriorate 
continuously such as medicines, volatile liquids and 
others. Dave and Patel [5] developed a (T1,Si) Policy 
inventory model for deteriorating items with time 
proportional demand, Sachan [12]  proposed a model, “On 
(T1,Si) policy inventory model for deteriorating items with 
time proportional demand”, Yan et al., [18] (1998) 
developed an Optimal production stopping and restarting 
times for an EOQ model with deteriorating Items. Goyal 
and Giri [7] presented a survey on “Recent trends in model 
of deteriorating inventory,” which is more helpful to the 
researchers who are working in deteriorating items. In this 
paper, we discuss a deterministic inventory model with 
time and stock dependent demand under partial 
backlogging. Fashionable goods and hi-tech products time 
factor play an important role. So, here we propose time 
dependent demand together with stock dependency. This 
paper is presented as follows: In section 2, the notations 
and assumptions are given. In section 2 we present the 
mathematical model. In section 4, numerical examples are 
given to illustrate the model. Finally, we conclude the 
paper.  
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2. NOTATIONS AND ASSUMPTIONS 
To develop the Mathematical model, the 

following notations and assumptions are being made: 
 

2.1 Notations 
 

K the ordering cost per order 
P the purchase cost per unit 
P' the selling price per unit, where P' > P 
θ the deterioration rate 

   h the holding cost per unit per unit time 
s the shortage cost per unit per unit time 
π  the opportunity cost due to lost sales per unit  
I(t) the inventory level at time t, where t ∈  [0,T] 
R(t) the demand rate at time t, where t∈  [0,T] 
δ the backlogging parameter, where 0 ≤ δ ≤ 1 
T the length of the replenishment cycle 
T1 the time at which the shortage starts, 0 ≤ T1 ≤ T 
TP the total inventory profit per unit time 

 
2.2 Assumptions 
 The proposed model is developed under the same 
assumptions as adopted by C-Y- Dye and L-Y- Ouyang 
[4], except the one related to the time-dependent demand 
and the inflation and time-discounting. 
 

a. The replenishment rate is infinite and lead time is 
zero. 

b. The distribution of time to deterioration of the items 
follows exponential distribution with parameter θ (i.e. 
constant rate of deterioration). 

c. The unit cost and the inventory carrying cost are 
known and constant. 

d. The selling price per unit and the ordering cost per 
order are known and constant. 

e. The demand rate function R(t), is deterministic and is 
a known function of time and instantaneous stock 
level I(t); the functional R(t) is given by  

 

          R (t) = ( )⎢
⎣

⎡
      ≤ 

>  ),(Ι+
0)(,
0)(f(t)

tItf
tItβ

 

 
Where β is a positive constant,  is a positive, f(t)
Continuous function of t∈(0, T]. 

f. Shortages are allowed and unsatisfied demand is 
backlogged at the rate of 

        t)].-(T  [1
1

δ+ The backlogging parameter δ is a 
       positive constant, and T1 ≤ t ≤ T. 
g. There is no repair or replacement of the deteriorated 

items during the production cycle. 
 
 

3. MODEL FORMULATION  
A typical behavior of the inventory in a cycle is 

depicted in the following Figure-1. 
 

 
 

Figure-1.Graphical representation of inventory system. 
 

The reduction of the inventory occurs due to the combined 
effects of  the demand  and  deterioration  in  the interval 
 [0, T 1 ) and demand backlogged in the interval [T, t).The 
instantaneous states of the inventory level I(t) at time t (0 
≤ t ≤ T) can be described by the following differential 
equations:   

( ) ( ) 0;0;)()()( 11 =≤≤−−−= TITttItItf
dt

tdI θβ       (1)                     

( ) ( ) 0;;
)](1[

)(
11 =≤≤

−+
−

= TITtT
tT

tf
dt

tdI
δ

           (2)  

 
The solutions of the above differential equations (1) and 
(2) are given respectively by  
 

;0;)()( 1
))((

1

TtduufetI
T

t

tu ≤≤= ∫ −+βθ                               (3) 

( )[ ] ;;
1

)()( 1

1

TtTdu
uT

uftI
T

t

≤≤
−+

−= ∫ δ
                 (4) 

 
The profit per unit time of our model consists of the 
following elements: 
 

• the setup cost per cycle K  
• the  holding cost per cycle (HC) 
• the shortage cost per cycle (SC) 
• the opportunity cost due to lost sales per cycle 

(OC) 
• the purchase cost per cycle ( , ) 1PC 2PC
• the sales revenue per cycle (SR) 

 

The purchase cost during the period [0, T1] and [T1, T] are 
given respectively by 
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dt
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The holding cost for carrying inventory over the period  
[0, T1] is given by 
 

( )∫=
1

0

T

dttIhHC   

 

dtduufeh
T T

t

tu∫ ∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= −+

1 1

0
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The shortage cost over the period [T1, T] is given by  
 

[sSC ∫=

∫ ∫= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+
−

T

T

T

t
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uT

ufs
1

1

1
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δ
                           (8) 

The opportunity cost due to lost sales during the period 
[T , T] is given by 1

( ) ( )[ ]∫ ⎥
⎦

⎤
⎢
⎣

⎡
−+

−=
T

T

dt
tT

tfOC
1

1
11

δ
π   

( )( )
( )[ ]∫ −+

−
=

T

T

dt
tT
tTtf

1
1 δ

δπ                                        (9) 

The sales revenue over the period [0, T] is given by 

( )( )∫∫ ∫ −+
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= −+

T

T

T T

t

tu du
uT

ufPdtduufetfPSR
1

1 1

1
)(')()('

0

))((

δ
β βθ  (10) 

Therefore, the profit per unit time during the period [0, T] 
is given by 
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The solutions for the optimal values of T1 and T (say T1* 
and T*) can be found by solving the following equations 
simultaneously:  
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From the above results, we have the following 
propositions: 
 
Proposition 1. If ( )( )PhP βθβ +−−'  0, then the 

optimal solution of the maximum profit, TP (T 1 *, T), does 
not exist.  

≥

 
Proof If ( )( PhP )βθβ +−−'  > 0, we can get (15) 

holds if and only if (T-T ) < 0. It is a contradiction. 

Similarly, if 
1

( )( )PhP βθβ +−−'  = 0, then from (15), 

we obtain T= T and substituting this into (14), we get 
K=0 which is also a contradiction. Therefore, if 

1

( )( PhP )βθβ +−−' ≤ 0, then the optimal solution of 

the maximum profit, TP (T *, T), does not exist.  1
 
Proposition 2. If ( )( PhP )βθβ +−−'  < 0, then the 

point (T 1 *, T) which solves (14) and (15) simultaneously 
not only exist but is also unique. 
Proof In order to prove the uniqueness of the solution, 
using (15), we take x = T-T 1  and let us take  
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Proposition 3. If ( )( PhP )βθβ +−−' < 0, then the 

(T *, T) from equations (14) and (15) is the global 
maximum solution of the total relevant profit per unit 
time. 
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Hence the Hessian matrix at  is negative 
definite. So the stationary point for our optimization 
problem is a global maximum. 

( **,1 TT )

 
 
Solution procedure 
 
Step 1: Solving (14) and (15) simultaneously, find T 
and  values. 1T
Step 2: using (11) find TP value. 
 
4. NUMERICAL EXAMPLES AND SENSITIVITY 
    ANALYSIS 

In this section, numerical examples are proposed 
to illustrate the proposed model and its solution procedure. 
Example 1 below is presented for exponentially increasing 
demand function: f (t) = (a > 0, b > 0). Example 2 
below is presented for a constant demand function:  

btae

f(t) = a(a >0). Sensitivity analysis for δβ , , a, b, is also 
reported for two types of functions mentioned above and 
are respectively displayed in Tables, 3 and 4, respectively. 
 
Example 1 
Let s = 3, K = 250, θ = .05, f (t) = , h = 1.75, P' = 15, 
P = 5,

btae
5=π , β =.2, δ = 5, a = 600, b = 3 in appropriate 

units. The optimal values are T =.5, T1 =.1,  
TP = 12143.93. Numerical values are shown in Table-1.  
 
Example 2 
Let s = 3, K =250, θ =.05, f (t) = , h = 1.75, P' =15,  btae
P = 5, 5=π , β =.2, δ = 5, a = 600, b = 0 in appropriate 
units. The optimal values are T =.5, T1 =.4,  
TP =2513.26336. Numerical values are shown in Table-2.  
 
Table-1. Optimal replenishment policy for an increasing 
               demand function. 
 
      T                T1                         T1 /T                TP 
0.5000            .1000           .200            12143.93099 
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Table-2. Optimal replenishment policy for an increasing 
               demand function. 
 
     T                    T1                             T1 / T                TP 
0.500                0.400               0.800           2513.26336 

 
In order to study how various parameters affects the 
optimal solution of the proposed inventory model, 
sensitivity analysis is performed. Keeping all the other 
parameters fixed and varying a single parameter at a time, 
for the same set of values we study the results. The results 
of the various parameters against the profit of our model 
are shown in Table 3 and Table 4.  
 
Table-3. Sensitivity analysis for increasing demand. 
 

Parameter Value TP 

β  
 

.09 
.2 
.3 

11894.83 
12143.93 
12377.53 

δ  
 

3 
5 
7 

12567.06 
12143.93 
11790.39 

a 
 

300 
600 
800 

5821.96 
12143.93 
16358.58 

b 
 

2 
3 
6 

8980.76 
12143.93 
32899.29 

 
Table 4. Sensitivity analysis for constant demand. 
 

Parameter Value TP 

β  
 

.09 
.2 
.3 

2462.95 
2513.26 
2560.18 

δ  
 

3 
5 
7 

2543.96 
2513.26 
2487.85 

a 
300 
600 
800 

1006.63 
2513.26 
3517.69 

 
From the above numerical values we conclude that: 
 

If the demand is an increasing function of time and for 
large values of “a” and “b” total profit is maximum. But if 
the demand is a constant, total profit is minimum 
compared to increasing demand function. 
 
Managerial implications 
 

• In order to increase the profit he should reduce all 
the cost parameters. 

• Maximum stock dependency rate of the products 
will maximize the profit of the retailer. 

• If the retailer increases the lost sales case it will 
reduce the benefit to him. 

             Graphical representation of TP against ‘a’ 

 
    
 5. CONCLUSIONS 

In this paper, we discussed an EOQ model for 
perishable items under stock and time-dependent selling 
rate and time-dependent partial backlogging. Here, we 
consider that demand is not only a function of stock but 
also fluctuates with time. For f (t) = a model reduces to 
that of C-Y-Dye and L-Y-Ouyang [4]. Finally, the 
sensitivity of the solution to changes in the values of 
different parameters has been discussed. From our 
numerical example one can easily conclude that total 
profit is maximum when the demand depends on time 
rather than constant demand.  

The proposed model can be extended in several 
ways. We could extend the deterministic demand function 
to stochastic demand patterns, as a function of selling 
price etc.   
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