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ABSTRACT 

PID controllers are widely used in industrial plants because it is simple and robust. Industrial processes are 
subjected to variation in parameters and parameter perturbations, which when significant makes the system unstable. The 
aim of this paper is to design a controller for applications of various electric drives in industry by selection of PID 
parameters using soft computing techniques. Performance of Z-N methods have been compared and analyzed with the 
intelligent tuning techniques like Genetic algorithm, Evolutionary Programming, Particle Swarm Optimization and 
Bacterial Foraging Optimization. Soft computing methods have proved their excellence in giving better results by 
improving the steady state characteristics and performance indices. 
 
Keywords: Genetic Algorithm, Evolutionary Programming, Particle Swarm Optimization and Soft computing. 
 
1. INTRODUCTION 

Conventional proportional integral derivative 
controller is widely used in many industrial applications 
due to its simplicity in structure and ease to design [1]. 
However it is difficult to achieve the desired control 
performance. Tuning is important for the best performance 
of PID controllers. PID controllers can be tuned in a 
variety of ways including hand tuning, Ziegler Nichols 
tuning, Cohen-coon tuning and Z-N step response, but 
these methods have their own limitations [3]. Soft 
computing techniques like GA, PSO and EP methods have 
proved their excellence in giving better results by 
improving the steady state characteristics and performance 
indices. 
 

 
 

Figure-1. Block diagram of Intelligent PID controller. 
 
1.1. Proportional integral derivative controller 

The PID controller calculation involves three 
separate control parameters, i.e. proportional, integral and 
derivative values .The proportional value determines the 
reaction of the current error, the integral value determines 
the reaction based on the sum of recent errors and 
derivative value determines the reaction based on the rate 
at which the error has been changing and the weighted 

sum of these three actions is used to adjust the process via 
the final control element.  

The block diagram of a control system with unity 
feedback employing Soft computing PID control action is 
shown in Figure-1 and the mathematical representation of 
PID control is given in (1). 
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2. REASON FOR SELECTING SOFT COMPUTING 
TECHNIQUES 

Optimization techniques like Genetic Algorithm 
(GA), Evolutionary Programming (EP), Particle Swarm 
Optimization (PSO) and Bacterial Foraging Optimization 
(BFO) belonging to the family of evolutionary 
computational algorithms have been widely used in many 
control engineering applications.  These are powerful soft 
computing techniques which create a set of potential 
solutions called as populations.  EP, GA, PSO and BFO 
found the optimal solution through cooperation and 
competition among potential solutions. These algorithms 
are highly relevant for industrial applications, because 
they are capable of handling problems with non linear 
constraints, multiple objectives and dynamic properties of 
the components that frequently appear in real-world 
problem. 
 The advantages of using heuristic techniques for 
PID are listed below [16]. 
 
a) Heuristic Techniques can be applied for higher order 

systems without model reduction [16]. 
b) These methods can also optimize the design criteria 

such as gain margin, Phase margin, closed loop 
bandwidth when the system is subjected to step and 
load change [16]. 
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2.1. GA based tuning of the controller 
The optimal value of the PID controller 

parameters Kp, Ki, Kd are to be found using GA. All 
possible sets of controller parameter values are particles 
whose values are adjusted to minimize the objective 
function, which in this case is the error criterion, and it is 
discussed in detail. For the PID controller design, it is 
ensured that the controller settings will provide the 
estimated results in a stable closed-loop system [1]. This is 
the most challenging part of creating a genetic algorithm 
in writing the objective function. In this project, the 
objective function is required to evaluate the best PID 
controller for the system. An objective function could be 
created to find a PID controller that gives the smallest 
overshoot, fastest rise time or quickest settling time. 
However in order to combine all of these objectives it was 
decided to design an objective function that will minimize 
the performance indices of the controlled system instead 
[2]. Each chromosome in the population is passed into the 
objective function one at a time. The chromosome is then 
evaluated and assigned a number to represent its fitness, 
the bigger its number the better its fitness [3]. The genetic 
algorithm uses the chromosomes fitness value to create a 
new population consisting of the fittest members. Each 
chromosome consists of three separate strings constituting 
a P, I and D term, as defined by the 3-row bounds 
declaration when creating the population [3]. When the 
chromosome enters the evaluation function, it is split up 
into its three terms. The newly formed PID controller is 
placed in a unity feedback loop with the system transfer 
function. This will result in a reduction of the compilation 
time of the program. The system transfer function is 
defined in another file and imported as a global variable. 
The controlled system is then given a step input and the 
error is assessed using an error performance criterion such 
as Integral Square Error (ISE).  
 

ISE=

dtte )(
0

2


 
 

The chromosome is assigned an overall fitness 
value according to the magnitude of the error, smaller the 
error larger the fitness value. The flowchart of the GA 
control system is shown in Figure-2. 
 

 
 

Figure-2. Flowchart of GA. 
 
2.2. EP based tuning of controller 
 There are two important ways in which EP differs 
from GA. First, there is no constraint on the 
representation. The typical GA approach involves 
encoding the problem solutions as a string of 
representative tokens. The steps involved in creating and 
implementing evolutionary programming are as follows: 
 
a) Generate an initial, random population of individuals 

for a fixed size (according to conventional methods 
Kp, Ki, Kd ranges declared). 

b) Evaluate their fitness (to minimize integral square 
error ISE) 

c) Select the fittest members of the population. 
d) Execute mutation operation with low probability. 
e) Select the best chromosome using competition and 

selection. 
f) If the termination criteria reached (fitness function) 

then the process ends. If the termination criteria not 
reached search for another best chromosome. The 
flowchart of the EP control system is shown in Figure-
3. 
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Figure-3. Flow Chart of EP. 
 
2.3. PSO based tuning of controller 

The algorithm proposed by Eberhart and 
Kennedy (1995) uses 1-D approach for searching within 
the solution space. For this study the PSO algorithm will 
be applied to 2-D or 3-D solution space in search of 
optimal tuning parameters for PI, PD and PID control. The 
flowchart of the PSO - PID control system [21] is shown 
in Figure-4. Consider position Xi,m  of the i-th particle as it 
traverses a n-dimensional search space: The previous best 
position for this i-th particle is recorded and represented as 
pbest I,n. The best performing particle among the swarm 
population is denoted as gbest I,n and the velocity of each 
particle within the n-dimension is represented as VI,n. The 
new velocity and position for each particle can be 
calculated from its current velocity and distance 
respectively [18]. The velocity of each particle, adjusted 
accordingly to its own flying experience and the other 
particles flying experience [7]. In PSO method each 
particle contains three members P, I and D. It means that 
the search space has three dimensions and particles must 
‘fly’ in a three dimensional space. 
 

 
 

Figure-4. Flowchart of PSO. 
 
2.4. Bacterial Foraging Optimization 

The survival of species in any natural 
evolutionary process depends upon their fitness criteria, 
which relies upon their food searching and motile 
behavior. The law of evolution supports those species who 
have better food searching ability and either eliminate or 
reshape those with poor search ability. The genes of those 
species who are stronger gets propagated in the evolution 
chain since they posses ability to reproduce even better 
species in future generations. So a clear understanding and 
modeling of foraging behavior in any of the evolutionary 
species, leads to its application in any nonlinear system 
optimization algorithm. The foraging strategy of 
Escherichia coli bacteria present in human intestine can be 
explained by four processes, namely chemotaxis, 
swarming, reproduction and elimination dispersal [7]. 
 
2.4.1. Chemotaxis 

The characteristics of movement of bacteria in 
search of food can be defined in two ways, i.e. swimming 
and tumbling together known as chemotaxis. A bacterium 
is said to be ‘swimming’ if it moves in a predefined 
direction, and ‘tumbling’ if moving in a random direction. 
Mathematically, tumble of any bacterium can be 
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represented by a unit length of random direction φ (j) 
multiplied by step length of that bacterium C(i). In case of 
swimming, this random length is predefined. 
 
2.4.2. Swarming 

For the bacteria to reach at the richest food 
location, it is desired that the optimum bacterium till a 
point of time in the search period should try to attract other 
bacteria so that together they conquer the desired location 
more rapidly. To achieve this, a penalty function based 
upon the relative distances of each bacterium from the 
fittest bacterium till that search duration, is added to the 
original cost function. Finally, when all the bacteria have 
merged into the solution point, this penalty function 
becomes zero. The effect of swarming is to make the 
bacteria congregate into groups and move as concentric 
patterns with high bacterial density. 
 
2.4.3. Reproduction 

The original set of bacteria, after getting evolved 
through several chemotaxis stages reaches the 
reproduction stage. Here, best set of bacteria gets divided 
into two groups. The healthier half replaces with the other 
half of bacteria, which gets eliminated, owing to their 
poorer foraging abilities. This makes the population of 
bacteria constant in the evolution process [11]. 
 
2.4.4. Elimination and dispersal 

In the evolution process, a sudden unforeseen 
event can occur, which may drastically alter the smooth 
process of evolution and cause the elimination of the set of 
bacteria and/or disperse them to a new environment. Most 
ironically, instead of disturbing the usual chemo tactic 
growth of the set of bacteria, this unknown event may 
place a newer set of bacteria nearer to the food location. 
From a broad perspective, elimination and dispersal are 
parts of the population level long distance motile behavior. 
In its application to optimization, it helps in reducing the 
behavior of stagnation often seen in such parallel search 
algorithms. The flow chart of BFO control system is 
shown in Figure-5. 
 

 
 

Figure-5. Flow chart of foraging process. 
 
3. RESULTS AND DISCUSSIONS 
 This paper discusses about the implementation of 
soft computing based controller tuning for the following 
process models which are taken from various literatures. 
 
 Speed control of DC motor [23] 
 High performance drilling process [11] 
 Servo control system [24] 
 
3.1. Speed control of DC motor 

In this experiment the Z-N closed loop tuning 
will be compared to the Soft Computing Methodology for 
a Speed control of DC motor process model. 

The transfer function of DC motor has been taken 
to analyze the performance of various evolutionary 
algorithms. The transfer function of DC motor model used 
in the experiment is given in (2). 

From the characteristic equations of the motor, 
the transfer function is obtained. 
 

265.2000217.0
20.007-

5.2exp

0.1433
  (s)G




ss
p

    (2) 
 

Based on Z-N closed loop tuning the values of 
designed PID controller are Kp=9.3883, Ki=0.2574 and 
Kd= 5.6274. The Table-1 summarise the initializing 
parameters value of soft computing methods. 

 
 
 



                                        VOL. 10, NO. 1, JANUARY 2015                                                                                                                ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
188

Table-1. PSO, GA, EP and BFO parameters. 
 

PSO Parameters GA Parameters EP Parameters BFO Parameters 

Population size:100 Population size:100 Population size:100 Number of bacterium =5 

Wmax=0.6/ 
Wmin=0.1 

Mutation rate:0.1 Normal distribution 
Number of iteration in a 

Chemotactic loop (Nc) =10 

C1 = C2 = 1.5 Arithmetic Crossover Mutation rate:0.01 
Number of reproduction 

(Nre) =15 
Number of Parameters (P) =3 

Iteration:100 Iteration:100 Iteration:100 
Wattract =0.04 
Dattract =0.01 

Fitness function:ISE Fitness function:ISE Fitness function:ISE 
Hrepellent =0.01 
Wrepellent=10 

Fitness functions :ISE 
 

The PID tuning parameters and the dynamic 
closed-loop performance specifications are shown in 
Table-2. The closed loop responses for model-1 are shown 
in Figure-6. The Z-N provides more rise time and settling 
time. Soft computing tuned controller provides an 

improved response when compared to the Z-N methods. 
From Table-2, it is observed that the PSO method yields a 
system having rapid settling time, smaller rise time and 
improved performance index over the other methods. 

 
Table-2. PID Parameters and closed - loop response specifications for model -1. 

 

Tuning 
method 

PID parameters 
Dynamic performance 

specifications 
Performance 

index 

Kp Ki Kd T r(sec) Ts(sec) M p (%) ISE 

ZN 9.3883 0.2574 5.6274 1.27 2.235 45.3 2.2926 

EP 10 0.1 1 0. 468 0.877 0. 0 1.334 

GA 3 0.0333 0.003 0. 444 0.781 0. 0 1.4406 

PSO 1.5 0.003 0.03 0. 0761 0.13 0. 0 1.0024 

BFO 10.521 0.0043 3.4195 0. 105 0.429 0. 0 1.454 
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Figure-6. System response specifications for model-1. 
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3.2. High performance drilling process 

The objective of this experiment is to compare 
the performance of the Soft Computing tuning 
methodology to that of the Z-N method for a high 

performance drilling process model. The third order model 
(high performance drilling process) [11] used in the 
experiment is given in (3). 

The modeling of a high performance drilling 
process [11] includes the modeling of the feed drive 
system, the spindle system and the cutting process. In this 
study, the overall plant model is obtained by experimental 
identification using different step shaped disturbances in 
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the command feed. The drilling force, F is proportional to 
the machining feed and the corresponding gain varies 
according to the work piece and drill diameter. The overall 
system of the feed drive, cutting process and 
dynamometric platform was modeled as a third-order 
system and the experimental identification procedure 
yielded the transfer function as: 
 

8.190s3.103
2

s89.17
3

s

1958
G(s)




               (3) 

Where s is the Laplace operator, f is the command feed, 
and F is the cutting force. The model does have certain 
limits in representing the complexity and uncertainty of 
the drilling process. However, it provides a rough 
description of the process behavior that is essential for 
designing a network - based PID control system. 

The PID tuning parameter and closed loop 
dynamic performance specifications of the system are 
shown in Table-3.  

 
Table-3. PID Parameters and closed -loop response specifications for model- 2. 

 

Tuning 
Method 

PID Parameters Dynamic performance specifications 
Performance 

Index 

Kp Ki Kd T r(sec) Ts(sec) M p (%) ISE 

ZN 0.4979 1.6108 0.0385 0.15 1.62 42 1.8876 

EP 0.8123 1.0000 0.2502 0.068 I.18 22.7 1.5208 

GA 0.6 1.4 0.1134 0.105 0.537 15 1.1649 

PSO 0.5452 1.2502 0.1000 0.115 0.5 12.9 1.2038 

BFO 0.324 1.8 0.095 0.136 1.84 11 1.0014 
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Figure-7. System responses for Model-2. 
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The PID tuning parameters and closed - loop 
dynamic performance specification are shown in Table-3 
and Figure-7 respectively. The Z-N tuning method 
delivers a response that has higher overshoot, longer 
settling time and larger rise time than that of the soft 
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computing techniques. The EP and GA methods produce a 
slightly oscillatory system with smaller overshoots and 
undershoot. On the other hand the PSO and BFO tuned 
PID provides a closed loop system with performance 
improvements in overshoot, settling time and rise time.  
 

3.3. POSITIONING SERVO - SYSTEM CONTROL  

       LOOP 
The positioning system is actuated by means of 

an armature controlled DC motor with gear speed 
reduction. The transfer function of DC motor model used 
in the experiment is 
 










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s
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                                  (4) 

 
From Figure-8 and Table-4, it is observed that the 

Z-N method yields a system with higher overshoot, longer 
settling and rise time in comparison to other methods. EP 
method yields a system with very smaller overshoot but 
longer settling time. The PSO and BFO method delivers 
superior control performance with improved dynamic 
performance specifications over the other tuning methods.   

 
Table-4. PID Parameter and closed loop response specification for model-3. 

 

Tuning 
Method 

PID Parameters Dynamic performance specifications Performance Index 

Kp Ki Kd T r(sec) Ts(sec) M p (%) ISE 

Z-N 3 6 0 3.66 3.68 89% 11.8514 

EP 5 40 0 0.456 6.67 0.2% 0.451 

GA 2.4658 4.97 0 0.971 1.67 0. 0 0.613 

PSO 0.5190 0.9531 0 0.325 0.89 0. 0 0.00281 

BFO 1.2989 2.8817 0 0.156 0.638 0 0.00111 
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Figure-8. System responses for Model - 3 
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4. CONCLUSIONS  

The optimal parameters of the PID controller for 
various processes were computed by using GA, EP, BFO 
and PSO. From the simulation, it is found that the soft 
computing tuned controller has minimum settling time and 
minimum ISE compared to the Z-N method tuned 
controller. It is also evident that the PSO tuned system 

gives a better closed loop performance than the BFO, GA, 
EP and Z-N by achieving smaller ISE criterion. 

The dynamic performance of the soft computing 
tuned system out performs that of the same system tuned 
with ZN for the following reasons. The Z-N method 
provides only initial tuning parameters. Fine tuning for an 
improved response depends on the experience and 
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intuition of the control practitioner. The PSO and BFO 
methods do not suffer from premature convergence. This 
is not true for the GA and EP. Improvements in tuning 
performance can be achieved if the GA and EP are run for 
a greater number of iterations. This comes at the cost of 
increased computational burden and process delays. The 
GA and EP depend on genetic operators. This implies that 
even weak solutions could contribute to the composition 
of future candidate solutions. GA and EP operate 
according to a sharing mechanism during their 
evolutionary process whereby the previous solutions are 
potentially lost while the PSO relies on a memory based 
progression. This ability to ‘remember’ its previous best 
solution means that the PSO can converge much faster 
than the GA and EP on an optimal solution. 
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