
 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4706

EFFICIENT SERVER LOAD BALANCING THROUGH IMPROVED
SERVER HEALTH REPORT

Saifullah M. A. and M. A. Maluk Mohammed

Department of Computer Science Engineering, M A M College of Engineering, Tiruchirappalli, India
E-Mail: ssg_saif@mamce.org

ABSTRACT

To achieve scalability and high availability of the service offered by web server clusters, an efficient server load
balancing policy is required. A critical part of the load balancing policy is to find the best available server to assign the
load. For that, server load needs to be calculated. In this paper, the parameters required to assess the load of the server are
explored. An important load parameter, ‘number of open file descriptors’ is identified to find the load on a server along
with existing load parameters, CPU cycles and free memory. The server load reporting is improved by extending SNMP
agent to report server resources including ‘number of open file descriptors’. Performance metrics used in test scenarios are:
Throughput, HTTP Response Time and Error rate and Normalized Throughput. Tests were done in two different scenarios:
normal condition scenario and the other scenario with high load on web servers. The load balancing results of the server
cluster by comparing our implementation with known load balancing algorithm used on web-clusters, Round Robin (RR)
and state full algorithm Least Connections (LC) are described. Our experimental results show that the previously
mentioned algorithms can be outperformed by our proposed adaptive mechanism, Scalable Load Balancing (SLBL)
algorithm. Our experimental results show that the performance of the cluster of web servers is significantly improved by
the proposed adaptive algorithm SLBL over the existing algorithms, RR and LC. The average service request rate that can
be serviced by the SLBL algorithm is around 1.27 times more than that of LC and around 1.93 times more than that of RR.

Keywords: dynamic load balancing, internet computing, web cluster.

1. INTRODUCTION

Web-based services are continuously growing
due to their demand and Web servers are getting lot of
service requests than ever as the Web has become the
standard, simple and default interface to access the
services of data centres, information systems, e-commerce
sites and application service providers. The performance
challenges of Web-based architecture have increased due
to the rapid growth of diversified client devices, the
increased complexity of middleware application software,
and the need of client authentication and system security,
and the need to ensure high availability of services of web
based systems in a cost-effective way. Despite the fact that
both the server and network capacity have raised a lot, and
better architectural solutions are being applied, the
challenge of short & acceptable response time continues to
question the research of web systems and clusters [1], [2],
[13]. Because when a server is overloaded, the response
times acquired by the customer grow and this can result in
losing the revenue of sale operation if we refer to a
commerce site [13]. Thus, still there are some challenges
to be resolved from the customer’s viewpoint in terms of
acceptable response time.

Server load balancing can solve these challenges
as it makes multiple servers take part in the same service
and share the same work, since the capacity of a single
server is limited. It gives crucial benefits such as
availability, scalability, security and manageability of Web
systems. One of the popular types of load balancing is
cluster-based servers also known as server farms. Service

or content is replicated on multiple servers in this option to
achieve load balancing benefits, but this requires robust
load balancing strategy. A server load balancing strategy
consists of distributing or assigning the processes or tasks
of a parallel application across the available servers. An
efficient load balancing strategy avoids the condition
where some servers are busy with multiple jobs queued up
while others are idle [11], [12], [15], [16], [17], [57].
Hence, the process of task distribution is more complex as
it requires selecting the right or best server among
available servers. One of the difficult problems of target
server selection is when to decide that a server is
overloaded.

Usual server load measurements or parameters
such as CPU load, free memory are indicative of server
load to some extent only as these parameters do not
indicate the resources of a server such as available file
descriptors (fd). Even if the system has enough free
memory and enough free CPU cycles but without enough
free file descriptors, service cannot be offered. This is one
of the likely situations for the increased response time
when the server is congested or overloaded. So ‘number of
open file descriptors’ is an important load parameter to be
monitored on the server. The existing load balancing
algorithms have not considered this parameter as
explained in the next section on Related Work. Our
proposed algorithm includes ‘number of open file
descriptors’ parameter along with CPU load and free
memory parameters.

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4707

The organization of rest of the paper is as
follows: Section II gives the details of related work.
Section III gives the proposed architecture of cluster based
load balancing system. Section IV gives load balancing
algorithms for cluster based web servers. Section V
describes proposed SLBL algorithm. Section VI describes
the extensions made to Net-SNMP agent. Section VII
explains enhancements done to HAProxy load balancer.
Section VIII discusses our experimental test bed setup,
experiments carried out and performance evaluation of
load balancing algorithms. Section IX gives conclusions
and future work.

2. LITERATURE REVIEW

The categorization purposed by Cardellini et al.
in [12] is based on the place where the distribution logic is
applied when forwarding a request to the chosen server of
a web server system which is locally distributed: at the
network and at the Web system [29], at the client, at the
Domain Name System (DNS) [28], [38], [39], [42], [43],
[44]. In this paper, we consider the first option as it is the
most popular, dispatcher-based clusters or cluster based
web server system. In cluster based load balancing system,
the incoming requests are received by a centralized
distributing entity of the Web system and it forwards them
to the servers of the cluster. The infrastructure of Web
system is the sole component that is controlled by the
content provider directly in the cluster based web server
system. Other devices that are part of the network such as
backbones, DNS systems, and routers cannot be controlled
by a individual organization. Web server-based cluster
architecture [1], [2], [13], [25], [26], [40], [41], [57] is
made up of a collection of web servers that are
interconnected by a high speed network and locally
distributed.

We focus on finding out the load on servers and
selection logic of the load balancing algorithm. The
existing load balancing algorithms have not considered the
proposed important parameter [9], [10], [19], [20], [21],
[22], [23], [24]. We describe in detail the mechanisms and
the parameters used for the estimation of load on web
servers. We discuss the performance evaluation of our
algorithm towards the efficiency of cluster based load
balancing system.

3. PROPOSED ARCHITECTURE OF CLUSTER
 LOAD BALANCING SYSTEM

 Figure-1 shows the architectural structure of the
proposed cluster based web system. The proposed
architecture of cluster offers only one interface to the
clients; therefore, it is seen as a single device. The
customers are not cognizant of the IP addresses and names

of the web servers that makes the architecture of cluster.

Figure-1. Proposed Architecture of cluster load
balancing system.

The clients access the applications hosted in the

cluster system by sending their requests to the virtual IP
address that corresponds to the centralized node that acts
as the user interface or front-end of the cluster
architecture. The front end node of such a system is known
as the web switch. The web switch forwards all the in-
bound packets received from the clients to the web server
devices according to the selected load balancing
algorithm. The critical component of the web switch or
distribution entity is the load balancing algorithm, that
selects the best suited target web servers to respond to
client requests [2], [18], [27].

4. EXISTING ALGORITHMS OF LOAD BALAN-
 CING FOR CLUSTER BASED WEB SYSTEMS

The routing process of cluster based web system
is coordinated by the load balancing algorithms of the
distribution entity. We categorize load balancing
algorithms employed at a non content aware distribution
node into four different classes: 1. Non-adaptive and
stateless, 2. Non-adaptive and stateful, 3. Adaptive and
stateless and 4. Adaptive and stateful. We call the
algorithms which consider or not of client connection
requests accordingly as stateful or stateless algorithms. We
call the algorithms which consider or not the feedback of
web server status measurements and adjust their behaviour
depending on the status measurement transitions
respectively as adaptive or non-adaptive algorithms.

Non-adaptive and stateless algorithms do not
keep track of any type of state information of web server
system. Examples of these kinds of algorithms are Round
Robin and Random algorithms. In spite of the fact that the
Round-Robin DNS scheduler [45] is based on a similar
principle, per host DNS caching usually leads the cluster
system to the definite state of imbalanced load. In
opposition, Round-Robin implementation into virtual web
server [46] is much better to DNS Round Robin because
of its each connection scheduling. Round-Robin and
Random algorithms can be extended easily to satisfy web
systems of diversified sizes [2], [47]. For example if Si is
an indication of the server capacity, a relative server
capacity can be defined as:

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4708

1 2

R ,0 1
max{ ,.. ,.. }

i
i i

k

S
R

S S S
  

As far as Round-Robin policy is concerned,

heterogeneous capacities can get different probabilities. As
for Random algorithm, the relative server capacity can be
compared with a random generated number p, where 0 ≤ p
≤ 1 in order to circulate to another server.

Non-adaptive and stateful algorithms keep an eye
on client connections at the centralized distribution entity.
Examples for this category are Weighted Least
Connections (WLC, Least Connections (LC), algorithms
[48], [49]. Furthermore, Never Queue Scheduling
algorithms and Shortest Expected Delay (SED) use
identical approach to Least Connections algorithm and the
web server with the shortest expected delay gets the client
connections [50].

Adaptive and stateless algorithms consider server
state conditions but do not observe connection state
information. These algorithms get information from
monitor agent processes running on either the centralized
distribution entity or the web servers. The server status
information received from monitor agent is processed in
order to decide metric values and therefore weights used
for balancing decisions. Some regularly used parameters
are: “memory usage”, “CPU load”, “ICMP request-reply”
time and “disk usage”. In some instances, web servers
status parameter values are generally saved by network
monitor services like SNMP that run on the web switch.
An example of this policy known as Central Load
Balancing for Virtual Machines (CLBVM) is introduced in
[51]. In other instances, SNMP manager run on web
switch queries status parameter values of web servers that
are maintained by SNMP agents on the web servers [52],
[57]. There are different prediction algorithms used for
load balancing, examples of them are [38], [39], [53], [54].

Adaptive and stateful algorithms take into
account server state conditions and also keep track of
client requests [49], [55]. Stateful adaptive
implementations include MALD (Mobile Agent based
Load balancing); it implements scalable load balancing on
distributed web servers using mobile agent’s technology
[56].

The predictive probabilistic load balancing policy
(PPLB) that uses queuing model to predict the usage of
each server and uses adaptive weights depending on a
utility function that follows the deviation and difference in
forecasted average and measured response time of web
server [39]. Simulated Annealing Load Spreading
Algorithm (SALSA), employs an energy function that
places each web server based on the following parameters:
processing capability of web server, arrival request rate,
request processing rate, and the average waiting time of
each request in the queue of web server [58], [59].

Though Adaptive Load Balancing Mechanism
(ALBM) [60] obtains performance information by
monitoring the applications running on the nodes,

monitoring of few critical applications and critical
resources is missing, which are proposed in this work.

5. SLBL ALGORITHM

In this work, a stateful adaptive load balancing
algorithm, called Scalable Load BaLancing (SLBL)
algorithm is designed and implemented. SLBL estimates
web server’s load in order to make balancing decisions.
The metrics used to dynamically adjust web server load
are: CPU load average, free memory and number of open
file descriptors. Metric calculation is performed by agents
that run at the web server. Based on these metric values
collected from agents running on web servers, server load
estimation occurs at the web switch. This whole process is
repeated periodically. Initial web server load values along
with server configuration in terms of metrics that is CPU
speed, total RAM and total number of file descriptors and
also polling period with weight age to each metric are
given by the decision maker, as an initial estimation of the
balancing point of system. The possible weight age of
each parameter is given in Table-1.

Table-1. Load parameters.

CPU load Free memory
No. of open file

descriptors

0 1 0

1 0 0

1/3 1/3 1/3

1/2 0 1/2

W1 W2 W3

First row of the above table is for the

administrator who is interested only in CPU load. Second
row is for the administrator who is interested only in free
memory. Third row is for the administrator who is
interested only in number of open file descriptors. Fourth
row shows equal weight age for each parameter. And the
last row shows any weight w1 for first parameter and w2
for second parameter and w3 for third parameter can be
given with the condition that w1 + w2 + w3 = 1. So the
administrator has the choice to give his own weight to
each metric. Web server health probe (process)
periodically runs on the web switch to collect the values of
metrics from agents at each web server and the values are
updated at web switch to calculate the adaptive server load
of each web server for that probing period.

Along with the monitoring of important server
resources, it is also necessary to monitor the status of
critical services of the servers. SLBL algorithm monitors
the status of the critical applications: web service, file
service and DNS service including TCP and UDP services.

6. RESOURCE MONITORING ENHANCEMENTS
 TO SNMP AGENT

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4709

SNMP (Simple Network Management Protocol)
is one of the most popular protocols for monitoring and
controlling the health and welfare of computer equipment,
network equipment, and servers. We used SNMP
mechanism for its simplicity and wide deployment.

Net-SNMP is an open source suite of applications
used to implement all the major versions of SNMP, SNMP
v1 [30], SNMP v2c [31] and SNMP v3 [32]. It supports
both the versions of IP protocol, IPv4 and IPv6. Net-
SNMP has implementation for lot of MIB (Management
Information Base) [3] information modules. Furthermore,
Net-SNMP is highly extensible for proprietary or
experimental uses too. Net-SNMP’s implementation is
available for Linux and Unix-like operating systems and
also for Microsoft Windows. The extension of Net-SNMP
agent requires both MIB extension and code extension.

A new function percentage_of_open_fds() is
written to find out the number of open file descriptors on a
system using /proc/sys/fs/file-nr . Net-SNMP agent needs
to get the number of open file descriptors and return this
number to HAProxy whenever it polls.

Pseudo code of the function percentage_of_
open_fds() is given below:
Function percentage_of_open_fds()
Step-1. Open file /proc/sys/fs/file-nr for reading.
Step-2. On successful opening of the above file, read its
contents into a string variable of length 1035.
Step-3. Tokenize the string obtained from /proc/sys/fs/file-
nr into words[0], words[1] and words[2].
Step-4. Assign the values as following:
Step-5. numOpenFDs = atol(words[0]);
Step-6. unUsedFDs = atol(words[1]);
Step-7. maxFDs = atol(words[2]);
Step-8. Calculate FDRatio = numOpenFDs / maxFDs *
100;
Step-9. Round of FDratio as SNMP does not support float
values.
Step-10. Return usedFDratio rounded integer obtained
from above step as percentage.
End of percentage_of_open_fds() function

7. HAPROXY LOAD BALANCER WITH
 ENHANCED SERVER RESOURCE POLLING

In this section the details about the HAProxy
code that was modified for the load balancing
implementation is described. A new option ‘resourcechk’
is added for resource monitoring of the server namely
‘open file descriptors’ on the servers under proxies section
as shown below:
 global
maxconn 4096 # Total Max Connections.
defaults
listen http_proxy 192.168.78.239:8088
balance roundrobin # Load Balancing algorithm
option resourcechk

Define the servers to balance
server server1 192.168.78.240:80 weight 1 maxconn 512

Configuration parsing module and server health
checking module are extended to poll the open file
descriptors on web servers and set the status of the server
accordingly. If the server has crossed soft limit of open file
descriptors, an error will be set on its status. Otherwise, it
will be available for load balancing. ‘Number of open file
descriptors’ is collected by hr NumOf Open File Descr
OID.

8. PERFORMANCE EVALUATION

We describe in this section, the test bed setup
used for evaluating the performance of the proposed load
balancing system. In our experimental scenarios, we used
a web cluster with web servers of equivalent processing
power connected to a web switch by LAN, as depicted in
Figure-1. The web servers use Apache software, version
2.2 and Net-SNMP version 5.6.1.1 is used in our
experiments. We performed our cluster tests with a set of
Perl scripts and httperf tool [14]. The configuration of web
servers and web-switch is Pentium 4 computer with a CPU
that operates at 2GHz and 1GB memory. The
configuration of web clients is Pentium 4 computer with a
CPU that operates at 2GHz and 512MB memory. The
operating system that runs on the web-switch is a Linux
[5] operating system. Communication between web server
and server health polling process of web-switch is done
through SNMP.

The load balancer was tested with a set of five
web servers. Initial test was to find out the suitable polling
interval for our proposed SLBL algorithm to get the values
of server health parameters. The HTTP client requests
retrieve 10Kb object from the cluster of web servers. This
test is performed at a rate of 50 HTTP requests per second.
A test program to occupy the file descriptors was run on
each web server to simulate the case of file descriptor
exhaustion.

As described above initial tests were run to
measure the performance of the load balancer based on the
polling interval with which we update the status
information of web server. And also in this experiment fds
load on the servers was toggled to find out the right
polling interval. The polling interval for updating server
load information was increased from 100ms to 500ms,
1second, 5seconds and finally 10 seconds. Due to SNMP
packet round trip time, lower intervals than 100ms are not
preferred. Bigger values than 10 seconds are not selected
as the statue of web server changes much faster. Number
of connection failures due to file descriptors exhaustion
was measured during different frequencies of updates for
our algorithm SLBL and RR (Round Robin).

Figure-2 shows that 500 milliseconds update and
lower intervals gave no connection failure but higher
polling intervals showed connection failures. In case of 10
sec, as the status of server load is not available with load

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4710

balancer (LB), LB sends to the loaded server so error starts
increasing right away. In case of 5 sec polling the

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16
 RR - Existing
 10 sec PollInterval
 5 sec PollInterval
 1 sec PollInterval
 500 msec PollInterval
 100 msec PollInterval

E
rr

o
rs

 (
C

o
n

n
e

ct
io

n
 F

a
ilu

re
s)

Time in Seconds

Figure-2. Errors (Connection Failures) over different
polling intervals.

update of server load came earlier than 10 seconds so LB
avoids loaded server to some extent so errors are less.
Similarly in case of 1 sec polling, the status of loaded
server comes much earlier than higher polling intervals so
errors are less comparatively. There were no results for
500ms and 100ms because of toggling of heavy load on
servers is well detected with these polling intervals so LB
did not send the traffic to these loaded servers hence there
were no errors. So 500ms line and 100ms lines are not
shown in Figure-2. As the polling replies did not affect the
RR algorithm, we can see that values are same for RR
algorithm for all polling intervals.

Different scenarios were tested after finding the
right polling interval. Each experimental scenario consists
of clients that send HTTP requests to the web servers. The
submission rate of requests varies for every experiment
accordingly. For every scenario, a fixed set of requests is
executed and for each rate performance metrics of the web
cluster system are measured. The performance metrics
used are the following:

Throughput, this is one of most important metric
for the performance measurement of the cluster of web
servers. This is measured in Kbps or KBpbs or Mbps
units.
HTTP response time is defined as the time from the initial
HTTP request being sent until the complete HTTP
response is received (in ms). In addition, in our scenarios,
HTTP response time is expressed as an average value over
all client HTTP requests per request rate.

Error Rate, (or connection failures) is the
percentage of the requests that were not serviced or
delayed service more than 10 seconds. Error rate is an
important performance metric of the balancing algorithm.
More specifically, as errors increase HTTP requests that
failed service increase. This is an indication of sub-optimal
selections of the balancing algorithm that lead HTTP
requests to timeout.

Scalability evaluation of the cluster of web
servers is also an important measurement.

In our experimental scenarios, we investigate the
following balancing algorithms: stateless and adaptive
Round Robin (RR) and state full non adaptive least
connections (LC). We compare those results with
measurements from our SLBL implementation in the
following scenarios:

I. The web servers have no initial load and the
clients retrieve an object from the cluster. This scenario
resembles the case of normal network conditions and lack
of web server loads.

II. The first web server’s CPU is loaded to test in
what extent load balancing algorithms will follow server
resource exhaustion.

III. Scalability evaluation is an important
performance measurement of the cluster of web servers.
The scalability of the cluster is measured with the
increasing size of cluster.

A. Scenario I

In this scenario HTTP client requests retrieve
10Kb object from the cluster of web servers. This
operation is initially performed at a rate of 100 HTTP
requests per second until 1200 HTTP requests per second,
with a step of 50 requests per second. The algorithms that
are put to test are: RR, LC and our SLBL implementation.
The purpose of this scenario is to compare the
performance of the stateless RR and of the state full LC
balancing algorithms with the performance of the SLBL
load balancing algorithm.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

2000

4000

6000

8000

10000

12000

14000

T
h

ro
u

g
h

p
u

t k
b

ps

HTTP Req/Sec

 RR
 LC
 SLBL

Figure-3. Scenario I. Throughput kbps over clients
Req/sec.

Figure-3 shows throughput variation of three

algorithms, RR, LC and SLBL for variation of HTTP
request rate under normal conditions. We can observe that
the throughput of three algorithms is almost same but for
550 HTTP requests/sec and around 950 HTTP
requests/sec, throughput was less. This reduction of
throughput is due to the network activity during that time.

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4711

The same can be verified in Figure-6 which shows error
rate of three algorithms RR, LC and SLBL for variation of
HTTP request rate under normal conditions. We can
observe in Figure-5 that for 550 HTTP requests/sec and
950 HTTP requests/sec, Error rates are high for three
algorithms, these are the same points when throughput was
shown less in Figure-3.

Figure-4 shows the response time variation of
three algorithms RR, LC and SLBL for variation of HTTP
request rate under normal conditions. We can observe that
initially the RR showed slightly better response time
compared to other algorithms LC and SLBL but as the
request rate increased above 800 req/sec gradually the
difference in response times of LC, SLBL and RR
reduced. The reason for little higher response.

0 200 400 600 800 1000 1200

100

200

300

400

500

R
es

p
o

n
se

 T
im

e
in

 m
s

HTTP Requests/sec

 RR
 LC
 SLBL

Figure-4. Scenario I. Response time in ms over clients
Req/sec.

time of LC and SLBL compared to RR response time is
because LC and SLBL uses more resources of web switch
and network. And other observation is that in normal
scenarios with higher request rates response time is almost
same for all these three algorithms.

0 200 400 600 800 1000 1200

0.00

0.02

0.04

0.06

0.08

E
rr

o
r

(%
 H

T
T

P
 R

e
q

)

HTTP Req/sec

 RR
 LC
 SLBL

Figure-5. Scenario I. Error rate over clients Req/sec.

The results of this scenario in terms of throughput
(Figure-3) show that, under normal conditions, all
algorithms perform almost equivalently. This was
something expected for this scenario since none of the
balancing mechanisms of LC or SLBL is actually used.
This is the case where a “blind mechanism” such as RR
outperforms “intelligent mechanisms” (LC, SLBL),
contribute only to consumption of web switch CPU and
network resources.

The conclusion of scenario I is that simple
algorithms like RR are sufficient as long as web servers
are of the same processing power and have equivalent
network resources at their disposal. Furthermore, HTTP
requests of small HTTP response content in bytes can be
efficiently balanced over a web cluster of uniformly
distributed servers, with the use of simple balancing
algorithm like RR.

B. Scenario II

In this scenario, the resources of server, file
descriptors are exhausted or overloaded, while HTTP
clients retrieve 10Kb object from the cluster of web
servers. This operation is initially performed at a rate of 10
HTTP requests per second, with a step of 10 requests per
second, until 150 HTTP requests per second. The purpose
of this scenario is to compare the performance of the
stateless RR and the state full LC balancing algorithms
with the SLBL algorithm under severe unbalancing
conditions due to resource overloading of two of the web
servers. To achieve resource overloading of the first web
server, resource intensive script is run on two web servers.

Figure-6 shows the throughput of the cluster as
increasing the HTTP client requests per second for the
three algorithms RR, LC and SLBL. Initially throughput is
almost the same for all three algorithms. But as request
rate increased RR algorithm’s throughput decreased
compared to other two algorithms. Above 90 requests per
seconds SLBL algorithm showed better throughput
compared to LC algorithm as shown the graph (Figure-6)
as expected, LC and SLBL algorithms outperform

0 20 40 60 80 100 120 140 160
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190

T
h

ro
ug

hp
ut

 k
B

yt
e

s/
se

c

HTTP Req/Sec

 RR
 LC
 SLBL

Figure-6. Scenario II. Throughput Kb/sec over clients
Requests/sec.

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4712

RR in terms of throughput (Figure-6) and we can

view more clearly the advantages of an adaptive
mechanism such as SLBL.

0 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180

200

220

240

R
e

sp
o

n
se

 T
im

e
 in

 m
s

HTTP Requests/sec

 RR
 LC
 SLBL

Figure-7. Scenario II. Average HTTP response time
over clients Requests/sec.

The response time of the cluster as increasing the

HTTP client requests per second for the three algorithms
RR, LC and SLBL is shown in Figure-7. In this Figure, the
RR algorithm showed comparable response time similar to
other algorithms initially, but as connections increase, its
response time increases (degrades) rapidly and also SLBL
algorithm selection causes HTTP flows to maintain better
average

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

35

E
rr

o
r

(%
 H

T
T

P
 R

e
q

)

HTTP Requests/sec

 RR
 LC
 SLBL

Figure-8. Scenario II. Error rate over clients
requests/sec.

HTTP response time than LC algorithm there are
fluctuations in the curves of all the three algorithms, i.e.,
up and downs in the curves are due to network activity
during that time.

In Figure 8 shows the error rate of the cluster as
increasing the HTTP client requests per second for the
three algorithms RR, LC and SLBL. We can observe that
initially the error rates of all the three algorithms were less

this is due to fewer requests gone to the overloaded
servers. As the rate of client requests increased error rate
also increased due to many requests going to the
overloaded servers. It can be seen that from the rate of 90
requests per second and above many requests timed out.
This large number of errors causes HTT P response time
to degrade rapidly.

The results of this scenario in terms of the
throughput of the cluster (Figure-6) shows that initially the
throughput is almost same for all the three algorithms this
can be verified by the cause of low error rate observed
initially in Figure-8. Above 90 requests per seconds SLBL
algorithm showed better throughput compared to other two
algorithms this is due to that fact that error rate increased
for the other two algorithms around the same time which
can be observed in Figure-9. The results of response time
of the cluster (Figure-7), shows better response time for
SLBL algorithm after 90 requests per second it is due to
the lower error rate for SLBL algorithm compared to other
algorithms that can be seen during the same time in
Figure-8.

The conclusion of scenario II is that simple
algorithms like RR are not sufficient for the scenario of
overloaded servers. Furthermore, the SLBL algorithm
successfully spots load conditions, due to the polling of
server resources, number of open file descriptors and thus
manages to perform better than the LC algorithm and RR
algorithm.

C. Scalability evaluation

In addition to throughput and response time
evaluation, performance evaluation of scalability of the
cluster of web servers is the other important measurement.
With the increase in the number of web servers, more
service requests can be served by the cluster of web
servers in the measured unit of time. The load balancing
strategy plays a crucial role in rising

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Number of Servers in Cluster

 SLBL
 LC
 RR

Figure-9. Scalability of Cluster Throughput.

the scalability of the cluster of web servers. Thus, we
evaluated the scalability of the cluster in our setup using
the value of maximum attainable throughput; it is

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4713

measured in requests/second unit. We increased the
number of servers in the cluster from 1 to 10 in this set of
experiments and generated enough clients in each
experiment to measure the maximum throughput of the
cluster by varying the numbers of servers in the cluster.

The scalability of the cluster with the increasing
size of cluster (the number of web servers in the cluster) is
shown in Figure-9. The proposed SLBL algorithm shows
the highest scalability by virtue of the improved load
balancing strategy and better usage of cluster resources.
Contrary to LC, the SLBL benefits from extra status
information regarding the health and resources each web
server. However, LC has lesser amount of load balancing
overhead compared to SLBL while the size of the cluster
is expanded. Therefore, under the conditions of low load,
the maximum throughput of LC still reaches that of SLBL,
and SLBL and LC policies have linear rise for the
throughput as the number of nodes increases. RR shows
lowest performance compared to SLBL and LC, due to its
poor load balancing strategy of simple request allocation
technique which assigns requests blindly without caring
the status of web servers. Thus, RR comes to a satiation
point with much lesser throughput value compared to
other schemes. This is the main cause for the very slow
growth of scalability as the size of cluster increases.

These performance results clearly indicate that
the proposed SLBL algorithm works better than the two
other algorithms (RR and LC). Also, under overload
conditions, the SLBL algorithm provides stable throughput
due to its polling mechanism to get the status of resources
on web servers, while the two other algorithms face poor
conditions and the throughputs of LC and RR are reduced.
In short, the average service request rate that can be
serviced by the SLBL algorithm is around 1.27 times more
than that of LC and around 1.93 times more than that of
RR.

9. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a novel load balancing
algorithm using improved health reporting of web servers
with extra parameters for cluster-based web servers that is
called SLBL. ‘Number of open file descriptors‘, an
important load parameter is identified to find the load on a
server along with existing load parameters, CPU cycles
and free memory. The server load reporting is improved
by the use of extended Net-SNMP agent to report the
status of server resources including ‘number open file
descriptors‘. HAProxy is used as a load balancer in this
setup and it considers the value of ‘number of open file
descriptors for selecting a server with more resources.
Tests were done in two different scenarios: normal
scenario and the other is with high load on servers.
Performance metrics that are used: throughput, response
time and error rate or connection failures. The load
balancing results of the server cluster of our
implementation are compared with the known load
balancing algorithms used on web clusters, Round Robin
(RR) and Least Connections (LC). We show that the

previously mentioned algorithms can be outperformed by
the proposed adaptive load balancing mechanism SLBL.
Our experimental results show that the performance of the
cluster of web servers is significantly improved by the
proposed adaptive algorithm SLBL over the existing
algorithms, RR and LC. The average service request rate
that can be serviced by the SLBL algorithm is around 1.27
times more than that of LC and around 1.93 times more
than that of RR. The core selection and control process of
SLBL algorithm can be enhanced with the help of real
time status information of transactions and service
processes and also using Business Activity Monitoring for
the improvement of load balancing efficiency.

REFERENCES

[1] Bourke Tony. 2001. Server load balancing, O’Reilly

and Associates. Inc., Sebastopol, CA.

[2] Cardellini Valeria, Emiliano Casalicchio, Michele
Colajanni and Philip S. Yu. 2002. The state of the art
in locally distributed Web-server systems. ACM
Computing Surveys (CSUR). 34(2): 263-311.

[3] K. McCloghrie, M.Rose. 1998. Management
Information Base for Network Management of
TCP/IP-based internets. IETF, RFC 1066. Available:
http://tools.ietf.org/html/rfc1066.

[4] J. Case, M. Fedor, M. Schoffstall, J. Davin. 1998. A
Simple Network Management Protocol. IETF, RFC
1067. Available: http://tools.ietf.org/html/rfc1067.

[5] Linux Operating System, http://fedoraproject.org/get-
fedora.

[6] W Hardaker et al. Net-SNMP package. Available
from: http://www.net- snmp.org.

[7] S. Waldbusser, P. Grillo. 2000. Host Resources MIB.
IETF, RFC 2790, Available:
http://tools.ietf.org/html/rfc2790.

[8] Willy Tarreau et al. HAProxy the Reliable, High
Performance TCP/HTTP Load Balancer. Available:
http://haproxy.1wt.eu/.

[9] Sandeep Sharma, Sarabjit Singh and Meenakshi
Sharma. 2008. Performance Analysis of Load
Balancing Algorithms. World Academy of Science,
Engineering and Technology.

[10] Zhong Xu, Rong Huang. Performance Study of Load
Balancing Algorithms in Distributed Web Server

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4714

Systems. CS213 Parallel and Dis- tributed Processing
Project Report.

[11] Carter R. L and Crovella M. 1995. Dynamic Server
selection in the Internet. Tech. Rep. TR-95-014,
Computer science Department, Boston University,
Boston, MA.

[12] G. R. Andrews, D. P. Dobkin and P. J. Downey. 1982.
Distributed allocation with pools of servers. In ACM
SIGACT-SIGOPS Symp. Principles of Distributed
Computing. pp. 73-83.

[13] Katja Gilly, Carlos Juiz, Ramon Puigjaner. 2011. An
up-to-date survey in web load balancing, World Wide
Web. 14(2): 105-131.

[14] D. Mosberger and T. Jin. 1998. httperf: A Tool for
Measuring Web Server Performance. Performance
Evaluation Review. 26(3): 31-37.

[15] Andreolini M., Colajanni M., Nuccio M. 2003.
Kernel-based web switches providing content-aware
routing. In: Proc. of the 2nd IEEE International
Symposium on Network Computing and Applications
(NCA’03).

[16] Aron M., Druschel P., Zwaenepoel W. 2000. Cluster
reserves: a mechanism for resource management in
cluster-based network servers. In: Proc. of ACM
SIGMETRICS.

[17] Borzemski L., Zatwarnicki K.: 2003. Afuzzy adaptive
request distribution algorithm for cluster-based web
systems. In: Proc. of the 11th Euromicro Conference
on Parallel, Distributed and Network- Based
Processing (Euro PDP).

[18] Cardellini V., Colajanni M., Yu P.S. 1999. Dynamic
load balancing on web- server systems. IEEE Int.
Comp. 3(3): 28-39.

[19] Derek L. Eager, Edward D. Lazowska, John Zahorjan.
1986. Adaptive load sharing in homogeneous
distributed systems. IEEE Transactions on Soft- ware
engineering. 12(5): 662-675.

[20] Y.Wang and R. Morris. 1985. Load balancing in
distributed systems. IEEE Trans. Computing. C-34,
no. 3, pp. 204-217.

[21] M. Zaki, W. Li and S. Parthasarathy. 1997.
Customized dynamic load balancing for a network of

workstations. Journal of Parallel and Distributed
Computing: Special Issue on Performance Evaluation,
Scheduling, and Fault Tolerance.

[22] P. L. McEntire, J. G. O’Reilly and R. E. 1984. Larson
Distributed Computing: Concepts and
Implementations. New York: IEEE Press.

[23] L. Rudolph, M. Slivkin-Allalouf, E. Upfal. 1991. A
Simple Load Balancing Scheme for Task Allocation
in Parallel Machines. In Proceedings of the 3rd ACM
Symposium on Parallel Algorithms and Architectures.
pp. 237-245.

[24] William Leinberger, George Karypis, Vipin Kumar.
20002. Load Balancing Across Near-Homogeneous
Multi-Resource Servers. 0-7695-0556-2/00, IEEE.

[25] S. Kontogiannis, S. Valsamidis, P. Efraimidis and A.
Karakos. 2009. Probing based load balancing for web
server farms. In Proc. of the 13th Panhellenic
Conference on Informatics. pp. 175-180.

[26] S. Kontogiannis, S. Valsamidis and A. Karakos. 2011.
ALBL, ALBL/HSC algorithms: Towards more
scalable, more adaptive and fully utilized balancing
systems. Journal of Computing. 3(2): 4-19.

[27] Brisco T.P. 1995. DNS support for Load Balancing.
RFC 1794.

[28] Iyengar A., Challenger J., Dias D., Dantzig P. 2000.
High-performance web site design techniques. IEEE
Int. Comp. 4, 17-26.

[29] Colajanni M., Yu P.S. 2002. A performance study of
robust load sharing strategies for distributed
heterogeneous web server systems. IEEE Trans.
Knowl. Data Eng. 14(2): 398-414.

[30] Case J., Fedor M., Schoffstall M. and J. Davin. 1990.
The Simple Network Management Protocol. RFC
1157, University of Tennessee at Knoxville,
Performance Systems International, Performance
Systems International, and the MIT Laboratory for
Computer Science.

[31] Case J., McCloghrie K., Rose M. and Waldbusser S.
1993. Introduction to version 2 of the Internet-
standard Network Management Framework. RFC
1441, SNMP Research, Inc., Hughes LAN Systems,
Dover Beach Consulting, Inc., Carnegie Mellon
University.

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4715

[32] Case J., Mundy R., Partain D. and B. Stewart. 1999.
Introduction to Version 3 of the Internet-standard
Network Management Framework. RFC 2570.

[33] Harrington D., Presuhn R. and B. Wijnen. 2002. An
Architecture for Describ- ing Simple Network
Management Protocol (SNMP) Management Frame-
works. STD 62, RFC 3411.

[34] Case J., Harrington D., Presuhn R. and B. Wijnen.
2002. Message Processing and Dispatching for the
Simple Network Management Protocol (SNMP). STD
62, RFC 3412.

[35] Levi D., Meyer P. and B. Stewart. 2002. Simple
Network Management Proto- col (SNMP)
Applications. STD 62, RFC 3413.

[36] Blumenthal U. and B. Wijnen 2002. User-Based
Security Model (USM) for Version 3 of the Simple
Network Management Protocol (SNMPv3). STD 62,
RFC 3414.

[37] Wijnen B., Presuhn R. and K. McCloghrie. 2002.
View-based Access Control Model (VACM) for the
Simple Network Management Protocol (SNMP). STD
62, RFC 3415.

[38] Daniel W. Yoas, Greg Simco, Resource utilization
prediction: a proposal for information technology
research, Proceedings of the 1st Annual conference on
Research in information technology, October 11-13,
2012, Calgary, Alberta, Canada.

[39] Saeed Sharifian, Seyed A. Motamedi, Mohammad K.
Akbari. 2011. A predictive and probabilistic load-
balancing algorithm for cluster-based web servers,
Applied Soft Computing. 11(1): 970-981.

[40] R. Jayabal, R.Mohan Raj. 2014. Design and
Implementation of Locally Dis- tributed Web Server
Systems using Load Balancer. International Journal of
Engineering Sciences and Research Technology.
ISSN: 2277-9655.

[41] Yuanhao Zhou1, Li Ruan1, Limin X i a o 1 , Rui
L i u 1 . 2014. A M e t h o d for Load Balancing based
on Software-Defined Network, Advanced Science
and Technology Letters. 45(CCA 2014): 43-48,
http://dx.doi.org/10.14257/astl.2014.45.09 ISSN:
2287-1233 ASTL.

[42] Hugo H. Kramer, Vinicius Petrucci, Anand
Subramanian, Eduardo Uchoa. 2012. A column
generation approach for power-aware optimization of
virtualized heterogeneous server clusters, Computers
and Industrial Engineering. 63(3): 652-662.

[43] Sabato Manfredi, Francesco Oliviero, Simon Pietro
Romano. 2013. A dis- tributed control law for load
balancing in content delivery networks. IEEE/ACM
Transactions on Networking (TON). 21(1): 55-68.

[44] Saeed Sharifian, Seyed A. Motamedi, Mohammad K.
Akbari. 2010. An approximation-based load-balancing
algorithm with admission control for cluster web
servers with dynamic workloads, The Journal of
Supercom- putting. 53(3): 440-463.

[45] Schemers R. J. 1995. ldnamed: A load balancing
name server in perl. In Proc. of 9th USENIX
conference on System administration. pp. 203-210.

[46] Zhang W. 2000. Linux server clusters for scalable
network services. In Proc. of Ottawa Linux
Symposium. pp. 437-456.

[47] Colajanni M., Yu P. S. and Dias M. D. 1998. Analysis
of task assignment poli- cies in scalable distributed
web-server systems. IEEE Trans. on Parallel
Distributed Systems. 9-6: 585-597.

[48] CISCO. 2007. CISCO Services Modules -
Understanding CSM Load Balancing
Algorithms.http://www.cisco.com/-
warp/public/117/csm/lb_algorithms.pdf.

[49] W. Zhang. 2003. Build highly-scalable and highly-
available network services at low cost. Linux
Magazine. 3: 23-31.

[50] A. Weinrib and S. Shenker. 1988. Greed is not
enough: Adaptive load sharing in large heterogeneous
systems. In: Proc. of IEEE INFOCOM. pp. 986-994.

[51] B. Abhay and C. Sanjay. 2010. Performance
evaluation of web servers using central load balancing
policy over virtual machines on cloud. In Proc. of
COMPUTE: The Third Annual ACM Bangalore
Conference. New York, NY, USA: ACM. pp. 1-4.

[52] J. Batheja and M. Parashar. 2003. A framework for
Adaptive Cluster Computing Using Javaspaces.
Cluster Computing. 6-3(3): 201-213.

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4716

[53] M. Andreolini and S. Casolari. 2006. Load prediction
models in web-based systems. In: Proc. of the 1st
international conference on Performance evaluation
methodologies and tools. ACM. p. 27.

[54] M. Andreolini, S. Casolari and M. Colajanni. 2008.
Models and Framework for Supporting Runtime
Decisions in Web-Based Systems. ACM Trans-
actions on the Web. 2(3): 17-43.

[55] P. O’Rourke and M. Keefe. 2001. Performance
Evaluation of Linux Virtual Server. In: Proc. of the
15th LISA System Ad-ministration Conference. pp.
79-92.

[56] J. Cao, Y. Sun, X. Wang and S. K. Das. 2003.
Scalable load balancing on distributed web servers
using mobile agents. Parallel and Distributed
Computing. 63(10): 996-1005.

[57] M. A. Saifullah, Dr. M. A. Maluk Mohammad. 2014.
Server Load Balancing Through Enhanced Server
Health Report. International Journal of Applied
Engineering Research. 9(24): 28497-28520.

[58] B. Boone, S. Van Hoecke, G. Van Seghbroeck, N.
Joncheere, V. Jonckers, F. De Turck, C. Develder and
B. Dhoedt. 2010. Salsa: QoS-aware load balancing for
autonomous service brokering. Systems and Software.
83(3): 446-456.

[59] M. A. Saifullah and M. A. Maluk Mohamed. Scalable
load balancing using virtualization based on
approximation. IEEE International Conference on
Computer Communication Technology, December 11
- 13, Hyderabad.

[60] Choi, E.: Performance test and analysis for an
adaptive load balancing mechanism on distributed
server cluster systems. Future Gener. Comput. Syst.
20, 237–247

