
 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

7647

AN EFFICIENT FPGA IMPLEMENTATION OF AES ALGORITHM

Sherin C. George and Anoop Suraj A.
ECE Department, Sahrdaya College of Engineering and Technology, India

E-Mail: celincg22@gmail.com

ABSTRACT

The Advanced Encryption Standard can be programmed in software or built with pure hardware. But Field
Programmable Gate Arrays (FPGAS) offer a faster and more customizable solution, since the entire algorithm can be
executed in a single tick of clock cycle. This research deals with the implementation of AES algorithm in FPGA using
Verilog Language. Software is used for simulation and optimization of the synthesizable Verilog code. All the
transformations of both Encryption and Decryption are simulated using an iterative design approach for minimizing the
hardware consumption. The design uses an iterative looping approach with block and key size of 128 bits and lookup table
implementation of S-box. The FCSR used for key generation make the algorithm more secure, and the usage of Vedic
multipliers instead of normal multipliers increases the throughput. This gives low complexity architecture and easily
achieves low latency.

Keywords: AES, FPGA, RSA, two fish, S-Box, mix column.

INTRODUCTION

With the fast development and extensive
application of computer and communication networks, the
information security has roused high attention.
Information security is not only applied to the political,
military and diplomatic fields, but also applied to the
common fields of people’s daily lives. With the unceasing
development of cryptographic techniques, the long-serving
DES algorithm with 56-bit key length has been broken due
to the defect of short keys. So AES (Advanced Encryption
Standard) alternates DES and has now become the new
standard. AES algorithm is now supported by a a small
number of international standards at present, and AES
algorithm is extensively applied in the financial field, in
domestic, such as realizing authenticated encryption in
ATM, intelligence card and magnetism card.

Advanced Encryption Standard (AES) is the best
secure symmetric encryption technique that has got
worldwide approval. The AES centered on the Rijndael
Algorithm is a well-organized cryptographic technique
that includes creation of ciphers for encryption and inverse
ciphers for decryption. Greater security and speed of
encryption/decryption is warranted by operations like Sub
Bytes (S-box)/Inv. Sub Bytes (Inverse S-box), Mix
Columns/Inv. Mix Columns and Key Scheduling.

Two simple techniques for encrypting
information are: symmetric encryption (also called secret
key encryption) and asymmetric encryption (also called
public key encryption). Symmetric algorithms are faster,
but the main problem associated with this algorithm is key
distribution. On the other hand, asymmetric encryption
eliminates key security problem, but these algorithms take
too much time for encryption and decryption. Certain
systems use asymmetric encryption for secure key
exchange joined with symmetric algorithms for rapid data
encryption. One of highly regarded symmetric algorithms
is AES (Advanced Encryption Standard), AES is
encryption standard recognized by the U.S. National
Institute of Standards and Technology (NIST) in

2001,based on Rijndael algorithm. The algorithm realized
in this paper is Rijndael, so-called after its authors Joan
Daemen and Vincent Rijmen, two Belgian cryptographers.
Rijndael is a reiterated block cipher with a flexible block
length and a flexible key length. The block length and the
key length can be fixed to 128, 192 or 256 bits. As it was
turned out to be a standard, called AES (Advanced
Encryption Standard), the block length was fixed to 128
bits, while the key lengths are as mentioned.

EXISTING ENCRYPTION TECHNIQUES

There are a number of asymmetric algorithms in
existence nowadays, including RSA, DSA, El Gamal, and
ECC. Currently, the most prevalent is RSA, which stands
for Rivest, Shamir, and Adelman, the names of its
creators. RSA is based on the difficultly of factoring huge
composite numbers into prime factors. RSA can be used
for secrecy or symmetric key interchange as well as for
digital signatures. DSA, which was suggested by NIST in
1991, is the short form for Digital Signature Algorithm.
DSA is to a certain extent less flexible, since it can be used
for digital signatures but not for secrecy or symmetric key
exchange [1]. The El Gamal algorithm, which was
developed by Taher El Gamal, is based on the problem of
calculating the discrete logarithm in a finite field. EEC is
the abbreviation for Elliptic Curve Cryptography, which
was independently recommended in 1985 by Neal Koblitz
and V. S. Miller. EEC is not really an algorithm, but an
alternate algebraic system for realizing algorithms, such as
DSA, using strange mathematical objects known as elliptic
curves over finite fields. El Gamal and ECC are not
presently supported by .NET out of the box; however, the
.NET Framework has been designed to be extensible,
making it possible for you or other vendors to provide
implementations.

Certain asymmetric algorithms, such as RSA and
El Gamal, can be used equally for encryption and digital
signatures. Other asymmetric algorithms, such as DSA,
are suitable only for realizing digital signatures. The

 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

7648

asymmetric algorithms are much slower and less secure
than symmetric algorithms for a similar key size. To get
desired result, asymmetric algorithms should be used with
a larger key size, and, to achieve acceptable performance,
they are mainly applied to small data sizes. Therefore,
asymmetric algorithms are generally used to encrypt hash
values and symmetric session keys, both of which tend to
be rather small in size when compared to plaintext data.

Symmetric-key algorithms are of two types:
Stream ciphers and Block ciphers. Stream ciphers encrypts
one bit of the message at a time, and block ciphers take a
large number of bits and encrypt them as a single unit.
Blocks of 64 bits have been normally used. The Advanced
Encryption Standard (AES) algorithm accepted by NIST
in December 2001 uses 128-bit blocks. Some examples of
prevalent and highly regarded symmetric algorithms
include AES (Rijndael), Blowfish, CAST5, Two fish,
Serpent, RC4, 3DES and IDEA

SALIENT FEATURES OF AES ALGORITHM

Overview of AES Algorithm
 AES is a block cipher with a block size of 128
bits. AES uses three different key lengths: 128, 192, or
256 bits. Encryption comprises 10 rounds of processing
for 128-bit keys, 12 rounds in the case of 192-bit keys, and
14 rounds for 256-bit keys. Excluding last round in each
case, all other rounds are same. Each round of processing
includes one single-byte based substitution step, a row-
wise shift step, a mix column step, and the adding of the
round key [2]. The order in which these four steps are
performed is not the same for encryption and decryption.
To describe the processing steps used in a single round, it
is finest to think of a 128-bit block arranged as a 4×4
matrix of bytes, as follows:

 (1)

Therefore, in the beginning four bytes of a 128-
bit input block conquer the first column in the 4 × 4 matrix
of bytes. The subsequent four bytes takes up the second
column, and the next 4 bytes occupy the 3rd column and
so on. The 4 × 4 matrix of bytes is referred to as the state
array. AES also has the conception of a word. A word
consists of 4 bytes, i.e. 32 bits. Hence, each row of the
state array is a word, as is each column. For each round of
processing, we first works on the input state array and
creates an output state array. The output state array formed
from the last round is arranged as a 128-bit output block.
Unlike DES, the decryption algorithm differs substantially
from the encryption algorithm. Although, overall,
the same steps are used in encryption and decryption, the
order in which the steps are carried out is different, as
mentioned previously. NIST announced AES as a standard
in 2001, is a slight variant of the Rijndael cipher
developed by two Belgian cryptographers Joan Daemen

and Vincent Rijmen. Whereas AES needs the block size to
stay as 128 bits, the real Rijndael cipher works using all
block sizes (and all key sizes) that is a multiple of 32 as
long as it goes above 128. The state array for the different
block sizes still has only 4 rows in the Rijndael cipher.
But, the number of columns depends up on the size of the
block.

DES was built on the Feistel network, whereas
AES was based on a substitution permutation network.
Each round of processing in AES contains byte-level
substitutions followed by word-level transformations.
Speaking generally, DES also involves substitutions and
transformations, except that the transformations are based
on Feistel notion of separating the input block into two
halves, working on each half separately, and then
exchanging the two halves [3].

The overall arrangement of AES
encryption/decryption is shown in Figure-1.The number of
rounds shown in Figure-1 is 10, is for the case when the
encryption key is 128 bit long. (The number of rounds is
12 when the key is 192 bits, and 14 when the key is
256.)Before any round-based processing for encryption
can begin, the input state array is XORed with the first
four words of the key schedule. The same thing happens
during decryption — except that now we XOR the cipher
text state array with the last four words of the key
schedule. For encryption, each round consists of the
following four steps:

 Substitute bytes
 Shift rows
 Mix columns
 Add round key.

The last step consists of XORing the output of the
previous three steps with four words from the key
schedule. For decryption, each round consists of the
following four steps:

 Inverse shift rows
 Inverse substitute bytes
 Add round key
 Inverse mix columns

Figure-1.The overall structure of AES encryption for 128
bit encryption key.

 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

7649

The third step involves XORing the output of the
previous two steps with four words from the key schedule.
Note the changes between the order in which substitution
and shifting operations are done in a decryption round and
the order in which similar operations are done out in an
encryption round. The final round for encryption does not
involve the “Mix columns” step. The final round for
decryption does not contain the “Inverse mix columns”
step.

Four steps in each round of processing
 Figure-2 shows the different steps that are carried
out in each round except the last one.

STEP 1: (called Sub Bytes for byte-by-byte substitution
during the forward process) (The corresponding
substitution step used during decryption is called Inverse
Sub Bytes.).This step consists of using a 16 × 16 lookup
table to find are placement byte for a given byte in the
input state array[4]. The entries in the lookup table are
created by using the notions of multiplicative inverses in
GF(28) and bit scrambling to destroy the bit-level
correlations inside each byte.

Figure-2. One round of encryption and decryption.

STEP 2: (called Shift Rows for shifting the rows of the
state array during the forward process) (The corresponding
transformation Add Round Key during decryption is
denoted Inverse Shift Rows for Inverse Shift-Row
Transformation.)The goal of this transformation is to
scramble the byte order inside each 128-bit block.

STEP 3: (called Mix Columns for mixing up of the bytes
in each column separately during the forward process)
(The corresponding transformation during decryption is
denoted Inverse Mix Columns and stands for inverse mix
column transformation.) The goal is here is to further
scramble up the 128-bit input block. The shift-rows step
along with the mix-column step causes each bit of the
cipher text to depend on every bit of the plaintext after 10
rounds of processing [5]. In DES, one bit of plaintext
affected roughly 31 bits of cipher text. But now we want
each bit of the plaintext to affect every bit of the cipher
text in a block of 128 bits.

STEP 4: (called Add Round Key for adding the round key
to the output of the previous step during the forward
process) (The corresponding step during decryption is
denoted inverse Add Round Key for inverse add round key
transformation.)

PROPOSED WORK
 The FCSR used for key generation make the
algorithm more secure, and the usage of Vedic multipliers
instead of normal multipliers increases the throughput.

Vedic Multiplier
 Vedic Mathematics is an early form of
Mathematics which existed in most primitive India in
1500 B.C. But was rediscovered by Sri Bharthi
KrishnaTirthaji between 1911 and 1918. He divided the
whole subject into 16 mathematical Sutras/formulae.
These Sutras are simple to understand and quick in terms
of computation. Of which, UrdhwaTiryakbhyam Sutra is
one of the most accepted sutra used to multiplication.
UrdhwaTiryakbhyam technically means “vertically
crosswise”. Therefore every step of multiplication
involves multiplication of the extreme digits. After which
the outcome of all the stages are concatenated in order to
arrive at the final result of the product.
 In a regular Urdhwa sutra multiplier, partial
products are got by ANDing the inputs and adding the bi-
products. In our approach, we substitute addition with
XORing. The product obtained is restricted to 8 bits using
usual methods of Galois field restriction. The addition of
XOR gates reduces the complexity of the existing Vedic
Mathematics Architecture.

Basic Key Generation using FCSR
 The idea of FCSRs was put forward by Klapper
and Goresky as a substitute to LFSRs for the design of
stream ciphers. FCSRs share many of the good properties
of LFSRs: sequences with known period and good
statistical properties. But unlike LFSRs, they provide an
intrinsic resistance to algebraic and correlation attacks
because of their quadratic feedback function. However,
two recent results have shown weaknesses in stream
ciphers using either the Fibonacci or Galois FCSR. Hell
and Johansson have exploited the bias in the carries
behavior of a Galois FCSR to mount a very powerful
attack against the F-FCSR stream cipher. Fisher have
considered an equivalent of the F-FCSR stream cipher
based upon a Fibonacci FCSR to study the linear behavior
of the induced system. We present a new approach for
FCSRs which we call the ring representation or ring
FCSR. This representation is based on the adjacency
matrix of the automaton graph. A ring FCSR can be
viewed as a generalization of the Fibonacci and Galois
representations. This structure has been widely studied for
the LFSR case as shown in and is a building block of the
stream cipher Pomaranch when LFSRs are used. However,
this paper presents for the first time this structure in the
FCSR case.

 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

7650

 In a Fibonacci FCSR, we have a single feedback
function which depends on multiple inputs. In a Galois
FCSR, we have multiple feedback functions with one
common input. A ring FCSR can be viewed as a tradeoff
between the two previous representations. It has multiple
feedback functions with different inputs. An example of a
ring FCSR is shown in Figure-1. Ring FCSRs have many
advantages over the previous representations. First, they
keeps all the good and traditional properties of the FCSRs
(known period, large entropy,...). Second, they can also be
used to prevent the attack of Hell and Johansson. Third,
they have a better diffusion than the Galois or Fibonacci
FCSR. Moreover, the ring representation allows the
designer to tune the implementation of FCSRs. The above
sections gives an overview on FCSRs theory and classical
representations. The ring FCSR is presented in the above
Section.

Figure-3. Block diagram of improved AES encryption.

Figure-4. Block diagram of improved AES decryption.

SIMULATION RESULTS
 Modelsim SE PLUS 6.3 g software is used for
simulation and optimization of the synthesizable Verilog
code. Synthesizing and implementation (i.e. Translate,
Map and Place and Route) of the code is carried out on
Xilinx - Project Navigator, ISE 14.2 Design suite. When
we feed 16 bytes (128 bit four 32 bits packets) of data in
case of AES encryption into Modelsim simulator, In

Figure-5, we can observe that all the 16 bytes of encrypted
data for AES, can be observed on the output in terms of 8
bits of chunk. For verification of the working of
Decryption we have feed the output of encryption module
to the decryption module and observed that the output has
regenerated the original text at the output in Figure-6. We
have forced 90876543245678909dcfae3456fdea74 as an
input to the design and obtained the original data back
after the decryption of the encrypted message with the use
of same key as seen in Figure-6. We have also monitored
that if the single bit of the decryption key is change we are
not in a position to retrieve the original data back.

Figure-5. AES encryption.

 The AES Encryption simulation result is shown
in Figure-5, the encryption parameters are the input
plaintext, the key of size 128 bit and the output cipher text.
At initial stage, the 16 byte input plain text is mapped in
the right order to the 4x4 byte state and then the number of
rounds is calculated based on the key Size and then the
basic key generated using FCSR was expanded using our
key schedule. At round one plaintext and key is XORed
and in the remaining nine rounds all four operations are
applied: Substitute Bytes, Shift rows, Mix columns, Add
round key. In the tenth round, Mix column stage is not
included and during each iteration, round key was
generated. Here simple XOR of each byte of the key with
the respective byte of the state is done to get cipher text of
the Encryption algorithm.

Figure-6. AES decryption.

 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

7651

The AES Decryption simulation result is shown
in Figure-6. For AES Decryption, the same encryption
process occurs simply in reverse order. The decryption
block is as shown in Figure-4, the decryption parameters
are the input cipher text, the key of size 128 bit and the
output plain text. The output plaintext should be same as
encryption input. In decryption the key schedule remains
the same. The only operations we need to implement are
the Inverse sub Bytes, shift Rows and mix Columns, while
add Round Key stays the same.

Figure-7. Improved AES encryption.

 In the Improved AES Encryption, the basic key
for encrypting 128 bit block of input data is generated
using a Feedback Carry Shift Register. Thus the chance
for breaking the AES algorithm is further reduced and the
security is being increased to a greater extent. In the Mix
Column stage, Vedic multipliers are used instead of
Normal multipliers to improve the speed.

Figure-8. Improved AES decryption.

 In the Improved AES Decryption, the basic key
for decrypting 128 bit block of cipher text is generated
using a Feedback Carry Shift Register. Thus the chance
for breaking the AES algorithm is further reduced and the
security is being increased to a greater extent. In the
Inverse Mix Column stage, Vedic multipliers are used
instead of Normal multipliers to improve the speed.

PERFORMANCE ANALYSIS
 The comparison with existing architectures is
very important for evaluating the efficiency of the
proposed design. The comparison is performed on the
basis of area requirements, throughput, operating speed,
and so forth. The related works show that different
architectures are introduced for AES to obtain sufficient
area requirements, throughput, and so forth, which are
suitable for various applications. This paper introduces an
architecture with a FCSR (Feedback Carry Shift Register)
for generating the key for encrypting and decrypting data.
 In the basic structure of AES implemented here,
the required area, in terms of slices and number of
registers, is high. Vedic multipliers are used instead of
normal multipliers in the basic structure for increasing the
speed of operation. It adversely affects the overall area
utilized for implementing the idea.
 Table-1 shows the comparison of the proposed
architecture with the previous work. In the above table 8.1,
we have compared the Mix Column stages of previous
architecture and new architecture. The total delay is 8.038
ns for previous architecture and it is 4.118 ns for new
architecture. From this, we can come to a conclusion that
speed is almost doubled. But when we are comparing the
number of Slice Registers, LUTs etc used, it is slightly
high when compared to previous architecture. It is a fact
that we cannot increase speed unless we are ready to
compromise area.

Table-1. Comparison between the previous architecture
and new architecture.

CONCLUSIONS
 Due to the increasing needs for secure
communications, a more safe and secure cryptographic
algorithms has to be proposed and implemented. The
Advanced Encryption Standard (AES-128bit) is widely
used nowadays in many applications. In this paper, we
proposed a new variation of AES and it is compared with
the original AES-128 algorithm. A complete hardware
implementation for the new AES-128 was also presented

 VOL. 10, NO. 17, SEPTEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

7652

in this paper. After comparing the hardware
implementation results, we found that our new design has
high throughput when compared with the original AES-
128 design. The FCSR used for key generation make the
algorithm more secure, and the usage of Vedic multipliers
instead of normal multipliers increases the throughput.
The extra increase in area can be tolerated and makes the
proposed algorithm ideal applications in which high level
of security and high throughput are required such as in
multimedia communications.

REFERENCES

[1] Hoang Trang and Nguyen Van Loi. 2012. “An

efficient FPGA implementation of the Advanced
Encryption Standard algorithm”, IEEE Paper.

[2] Shylashree N. Nagarjun Bhat and V. Shridhar. 2012.
“FPGA Implementation of Advanced Encryption
Standard: A Survey”, IJAET.

[3] Dr. Prerna Mahajan and Abhishek Sachdeva. 2013.

“A Study of Encryption Algorithms AES, DES and
RSA for Security”, Global Journal of Computer
Science and Technology Network, Web & Security.

[4] Hamdan O. Alanazi, B. B. Zaidan, A. A. Zaidan.
2010. “New Comparative Study Between DES, 3DES
and AES within Nine Factors”, Journal Of
Computing, Vol. 2, No. 3.

[5] Amandeep Kaur, Puneet Bhardwaj and Naveen
Kumar. 2013. “FPGA Implementation of Efficient
Hardware for the Advanced Encryption Standard”,
IJITEE.

[6] Sumalatha Patil and Mala L. 2013. “Design of High
Speed 128 bit AES Algorithm for Data Encryption”,
International Journal of Current Engineering and
Technology, ISSN 2277 – 4106.

[7] Anitha P and Palanisamy V. 2011. “Data Protection
Algorithm Using AES”, International Journal of
Current Research, Vol. 33, No. 6, pp.291-294.

[8] K. Sireesha and S. Madhava Rao. 2013. “A Novel
Approach of Area Optimized and pipelined FPGA
Implementation of AES Encryption and Decryption”,
International Journal of Scientific and Research
Publications, Vol. 3, No. 9.

[9] Mg Suresh and Nataraj K. R. 2012. “Area Optimized
and Pipelined FPGA Implementation of AES
Encryption and Decryption”, International Journal of
Computational Engineering Research, Vol. 2, No. 7.

[10] Subashri T., Arunachalam R., Gokul Vinoth Kumar
B. and Vaidehi V. 2010. “Pipelining Architecture of

AES Encryption and Key Generation with Search
Based Memory”, International journal of VLSI design
& Communication SystemsVol.1, No.4.

[11] M. Pitchaiah, Philemon Daniel and Praveen. 2012.
Implementation of Advanced Encryption Standard
Algorithm, International Journal of Scientific &
Engineering Research Vol. 3, No. 3.

[12] Ayushi. 2010. A Symmetric Key Cryptographic
Algorithm, International Journal of Computer
Applications, Vol. 1, No.15.

